LES 20 ACIDES AMINES STANDARDS

Les acides aminés sont tous de la forme suivante :

- Une fonction acide carboxylique
- Une fonction amine primaire
- Un groupement (chaine) latéral R

Il existe 20 acides aminés standards.

Plusieurs classifications existent pour ces acides aminés :

- Nombre d'atomes de carbone : ATTENTION ne pas confondre le nombre de carbones de l'aa et le nombre de carbones du groupement latéral.
- Nature chimique du groupement latéral :
- Aliphatique: hydrocarboné (linéaire ou ramifié); à fonction alcool; soufré; à fonction acide; à fonction basique.
- Cyclique : aromatique ; à fonction basique ; acide α iminé ; hétérocyclique.
- <u>Polarité du groupement latéral</u>: capacité à engager des LH (notamment avec l'eau). ATTENTION : les notions de polarité/non polarité se rapportent au groupement latéral.

UN AA LIBRE EST TOUJOURS POLAIRE PAR SON AMINE ET SON CARBOXYLE.

Ils sont **solubles** dans les solvants **polaires** (*Exemple : eau, alcool -exclusivement in vitro-*) et **insolubles** dans les solvants **apolaires** comme les solvants organiques.

Influence du groupement latéral R et du pH.

- \rightarrow À **pH** \sim **7** (Gly très soluble >>> Leu).
- → À **pH acide** (Tyr, Leu, Cyss peu solubles).

La présence d'ions dans la solution influence aussi : plus il y aura d'ions plus la solubilité va diminuer.

Les AA possèdent au moins deux groupements ionisables ce qui leur confère leur caractère amphotère (à la fois acide et base). Différentes formes ionisées selon le pH (réactions de dissociation)

pH acide (excès de H+) pH alcalin

- COOH \rightleftharpoons - COO- + H+

- NH_3^+ \rightleftharpoons - NH_2 + H+

Acide faible (donneurs de protons) Base conjuguées (accepteurs de protons)

L'acide aminé en solution est toujours sous forme ionisée.

Classification selon la nature chimique du groupement latéral

Groupement latéral à chaine aliphatique hydrocarbonée						Groupement latéral cyclique			
Hydroca	arboné	À Fonction alcool	À fonction Soufré	À fonction acide	À fonction basique	Aromatique	À fonction basique	Acide a- iminé	Hétérocyclique
Linéaire	Ramifié								
Glycine Alanine	La valine Leucine isoleucine	Serine Thréonine	Cystéine Méthionine	Aspartate et glutamate Asparagine Glutamine	Lysine Arginine	Phénylalanine Tyrosine Tryptophane	Histidine	Proline	Tryptophane, Histidine Proline

La polarité du groupement latéral R

6 AA à chaine latérale polaire non chargé.

9 AA à groupement latéral non polaire.

AA à groupement latéral non-polaire	AA à groupement latéral polaire non chargé	AA à groupements latéral polaire chargé négativement	AA à groupements latéral polaire chargé positivement	
Glycine	Sérine	Acide aspartique	Lysine	
Alanine	Thréonine	Acide glutamique	Arginine	
Valine	Cystéine		Histidine	
Leucine	Tyrosine			
Isoleucine	Asparagine			
Méthionine	Glutamine			
Phénylalanine				
Tryptophane				
Proline				

NOM	3 LETTRES	1 LETTRE	CLASSIFICATION	NOMBRE DE CARBONE	CARACTERISTIQUES
GLYCINE	GLY	G	ALIPHATIQUE HYDROCARBONE LINEAIRE Groupement latéral non- polaire	2	Très répandue dans les protéines Pas de carbone asymétrique Est en importance quantitative, c'est le plus rencontré. Ne possède pas de Cα asymétrique.
ALALINE	ALA	A	ALIPHATIQUE HYDROCARBONE LINEAIRE Groupement latéral non- polaire	3	L'alanine est très répandue dans les protéines 9%. Tous les autres AA vont dériver de l'Alanine par substitution. On dit que c'est l'horloge supérieur de la glycine. Elle a un groupement CH3. La structure des autres AA va dériver de l'Alanine par substitution des Hydrogènes de ce groupement CH3
VALINE	VAL	V	ALIPHATIQUE HYDROCARBONE RAMIFIE Groupement latéral non- polaire	5	Pas synthétisé par les Hommes ou animaux, ils doivent être apportés par l'alimentation Hydrophobes on les retrouve dans les domaines transmembranaires des membranes. Non essentiel, retrouver dans la gélatine
LEUCINE	LEU	L	ALIPHATIQUE HYDROCARBONE RAMIFIE Groupement latéral non- polaire	6	Pas synthétisé par les Hommes ou animaux, ils doivent être apportés par l'alimentation Hydrophobes on les retrouve dans les domaines transmembranaires des membranes.
ISOLEUCINE	ILE	I	ALIPHATIQUE HYDROCARBONE RAMIFIE Groupement latéral non- polaire	6	Pas synthétisés par les Hommes ou animaux, ils doivent être apportés par l'alimentation Hydrophobes on les retrouve dans les domaines transmembranaires des membranes.
METHIONINE	MET	М	ALIPHATIQUE SOUFRE Groupement latéral non- polaire	5	Premier acide importé dans la constitution des protéines (qui peut être clivée ensuite) Méthylation et biosynthèse des protéines Groupement thio-éther

PHENYLALALINE	PHE	F	CYCLIQUE AROMATIQUE Groupement latéral non- polaire	9	Absorbent la lumière UV vers 280 nm, dans les hélices en contact avec les lipides. Permet de déterminer par leur absorption la quantité dans laquelle ils sont présents dans une solution. Est un des AA les plus hydrophobes. Peut établir des liaisons H
TRYPTOPHANE	TRP	W	CYCLIQUE AROMATIQUE ET CYCLIQUE HETEROCYCLIQUE Groupement latéral non- polaire	11	Absorbent la lumière UV vers 280 nm, dans les hélices en contact avec les lipides. Permet de déterminer par leur absorption la quantité dans laquelle ils sont présents dans une solution. Découvert après hydrolyse par la trypsine. Précurseur important de la sérotonine (hormone, neuromédiateur). Il contient un noyau benzène et un noyau tyrol.
PROLINE	PRO	Р	CYCLIQUE HETEROCYCLIQUE ACIDE ALPHA IMINE Groupement latéral non- polaire	5	Possède des propriétés structurales particulière dans la protéine
SERINE	SER	S	ALIPHATIQUE ALCOOL AA à groupement latéral polaire non chargé	3	Protéine en contact avec des solvants
THREONINE	THR	Т	ALIPHATIQUE ALCOOL AA à groupement latéral polaire non chargé	4	Possède deux carbones asymétriques = 4 stéréoisomères
CYSTEINE	CYS	С	ALIPHATIQUE SOUFRE AA à groupement latéral polaire non chargé	3	Cette fonction peu s'oxyder avec une autre fonction thiol pour former des ponts disulfures ; Rôle important dans les structures tertiaires et quaternaires des protéines.
TYROSINE	TYR	Y	CYCLIQUE AROMATIQUE ALCOOL AA à groupement latéral polaire non chargé	9	Absorbent la lumière UV vers 280 nm, dans les hélices en contact avec les lipides. Permet de déterminer par leur absorption la quantité dans laquelle ils sont présents dans une solution. Est un site de phosphorylation pour de nombreuses protéines.
ASPARAGINE	ASN	N	ALIPHATIQUE AMIDE	4	Abondant dans les protéines (surface permet des liaison hydrogène) L'Asn subit une N-glycosylation sur l'azote du groupement aminé (processus post traductionnel)
GLUTAMINE	GLN	Q	ALIPHATIQUE AMIDE	5	Abondant dans les protéines (surface permet des liaison hydrogène)

ACIDE ASPARTIQUE	ASP	D	ALIPHATIQUE ACIDE Groupements latéral polaire chargé négativement	4	Qualifiés d'aminoacide dicarboxylique et leur chaine est acide et ionisable à pH basique. Rôle important dans les réactions au niveau du foie. Très répandu dans les protéines et rôle important dans les réactions de transamination.
ACIDE GLUTAMIQUE	GLU	E	ALIPHATIQUE ACIDE Groupement latéral polaire chargé négativement	5	Qualifiés d'aminoacide dicarboxylique et leur chaine est acide et ionisable à pH basique. Rôle important dans les réactions au niveau du foie. Très répandu dans les protéines et rôle important dans les réactions de transamination.
LYSINE	LYS	K	ALIPHATIQUE BASIQUE Groupement latéral polaire chargé positivement	6	Groupe epsilon aminé, ionisable à pH acide, modifications post traductionnelles (hydroxylation, méthylation) Chaine latérale longue et au bout un amide ionisé (α + $\mathcal E$ aminé)
ARGININE	ARG	R	ALIPHATIQUE BASIQUE Groupement latéral polaire chargé positivement	6	3 carbones dans la chaine latérale et le groupement guanidine
HISTIDINE	HIS	Н	CYCLIQUE HETEROCYCLIQUE BASIQUE ET CYCLIQUE AROMATIQUE Groupement latéral polaire chargé positivement	6	Aromatique avec groupement latéral qui est un imidazole

AA ESSENTIELS

- Les AA possèdent un carbone asymétrique (sauf la glycine).
- En règle générale, les AA des protéines de l'organisme appartiennent tous à la série L.

Acides aminés Formule avec R la chaîne générale: latérale Glycine (Gly, G) Alanine (Ala, A) Valine (Val,V) Leucine (Leu,L) Isoleucine (Ile,I) Phénylalanine (Phe,F) Serine (Ser,S) Thréonine(Thr,T) NH_2 Tyrosine (Tyr,Y) Asparagine (Asn,N) Glutamine(Gln,Q) Lysine (Lys,K) $\dot{N}H_2$ Arginine (Arg.R) Triptophane(Trp.W) Histidine (His.H) Cystéine (Cys,C)

Algilille (Alg,IX)	Triptophane(Trp,VV)	riistidirie (riis,ri)	Cysteme (Cys,C)	
OH NH ₂ NH NH	OH ONH ₂ N H	OH HNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	$0 \xrightarrow{OH} SH$ NH_2	

Les 20 acides animés naturels terrestres